skip to main content


Search for: All records

Creators/Authors contains: "Sun, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. The proton NMR spectra for free base 22-hydroxybenziporphyrins show that they favor antiaromatic keto-tautomers (22-oxybenziporphyrins) in solution. Protonation affords weakly diatropic dications, while metalation produces nonaromatic nickel(II), copper(II) and palladium(II) complexes. 
    more » « less
  3. ABSTRACT We report on detailed multiwavelength observations and analysis of the very bright and long GRB 210619B, detected by the Atmosphere-Space Interactions Monitor installed on the International Space Station and the Gamma-ray Burst Monitor (GBM) on-board the Fermi mission. Our main goal is to understand the radiation mechanisms and jet composition of GRB 210619B. With a measured redshift of z = 1.937, we find that GRB 210619B falls within the 10 most luminous bursts observed by Fermi so far. The energy-resolved prompt emission light curve of GRB 210619B exhibits an extremely bright hard emission pulse followed by softer/longer emission pulses. The low-energy photon index (αpt) values obtained using the time-resolved spectral analysis of the burst suggest a transition between the thermal (during harder pulse) to non-thermal (during softer pulse) outflow. We examine the correlation between spectral parameters and find that both peak energy and αpt exhibit the flux tracking pattern. The late time broad-band photometric data set can be explained within the framework of the external forward shock model with νm < νc < νx (where νm, νc, and νx are the synchrotron peak, cooling-break, and X-ray frequencies, respectively) spectral regime supporting a rarely observed hard electron energy index (p < 2). We find moderate values of host extinction of E(B − V) = 0.14 ± 0.01 mag for the small magellanic cloud extinction law. In addition, we also report late-time optical observations with the 10.4 m Gran Telescopio de Canarias placing deep upper limits for the host galaxy (z = 1.937), favouring a faint, dwarf host for the burst. 
    more » « less
  4. null (Ed.)
    Devices that facilitate nonverbal communication typically require high computational loads or have rigid and bulky form factors that are unsuitable for use on the face or on other curvilinear body surfaces. Here, we report the design and pilot testing of an integrated system for decoding facial strains and for predicting facial kinematics. The system consists of mass-manufacturable, conformable piezoelectric thin films for strain mapping; multiphysics modelling for analysing the nonlinear mechanical interactions between the conformable device and the epidermis; and three-dimensional digital image correlation for reconstructing soft-tissue surfaces under dynamic deformations as well as for informing device design and placement. In healthy individuals and in patients with amyotrophic lateral sclerosis, we show that the piezoelectric thin films, coupled with algorithms for the real-time detection and classification of distinct skin-deformation signatures, enable the reliable decoding of facial movements. The integrated system could be adapted for use in clinical settings as a nonverbal communication technology or for use in the monitoring of neuromuscular conditions. 
    more » « less
  5. This paper proposes long-term reliability management for spatial multitasking GPU architectures. Specifically, we focus on electromigration (EM)-induced long-term failure of the GPU's power delivery network. A distributed power delivery network model at functional unit granularity is developed and used for our EM analysis of GPU architectures. We use a recently proposed physics-based EM reliability model and consider the EM-induced time-to-failure at the GPU system level as a reliability resource. For GPU scheduling, we mainly focus on spatial multitasking, which allows GPU computing resources to be partitioned among multiple applications. We find that the existing reliability-agnostic thread block scheduler for spatial multitasking is effective in achieving high GPU utilization, but poor reliability. We develop and implement a long-term reliability-aware thread block scheduler in GPGPU-Sim, and compare it against existing reliability-agnostic scheduler. We evaluate several use cases of spatial multitasking and find that our proposed scheduler achieves up to 30\% improvement in long-term reliability. 
    more » « less